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Abstract

We introduce a wavelet–like transform similar to the Haar transform, but
with the properties that it packs the results into the same number of bits as
the original data, and is reversible. Our method, called TLHaar, uses table
lookups to replace the averaging, differencing, and bit shifting performed in a
Haar Integer Wavelet Transform (IWT). TLHaar maintains the same coefficient
magnitude relationships for the low– and high–pass coefficients as true Haar,
but reorders them to fit into the same number of bits as the input signal, thus
eliminating the sign bit that is added to the Haar IWT output coefficients.
Eliminating the sign bit avoids using extra memory and speeds the transform
process. We tested TLHaar on a variety of image types, and when compared
to the Haar IWT TLHaar is significantly faster. For image data with lines or
hard edges TLHaar coefficients compress better than those of the Haar IWT.
Due to its speed TLHaar is suitable for streaming hardware implementations
with fixed data sizes, such as DVI channels.

1 Introduction

The Haar transform is probably the simplest and best known of the wavelet transforms
[9]. It consists of a series of averaging and difference steps, each step operating on two
adjacent low–pass values A and B and producing a low–pass value L̃ = (A+B)/2 and
a high–pass value H̃ = (A−B)/2. The next iteration of the transform is performed on
the low–pass values resulting from the previous iteration, and the process repeats until
there is only a single low–pass value remaining. The original Haar transform, even if
operating on integer values, produces floating–point coefficients due to the averaging
step. For speed, and to ensure that data is not lost in the transform process, a Haar
integer wavelet transform (IHaar) approach is often used [7], where L̂ = b(A+B)/2c
and Ĥ = B − A§.
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A shortcoming of the IHaar transform is that, due to the subtraction that occurs
in the transform procedure, it is necessary to store a sign bit for all nonzero high–
pass coefficients. These sign bits present some problems. First, there is raw data
inflation: the number of bits required to store the transformed data is greater than
that required to store the original data. Second, an actual implementation that
operates (for example) on 8–bit values must represent them using 16 bits. Third, the
sign bits often appear to have a random distribution, and if not handled with care
they can hurt the compression potential of the transformed data. In [11] a wavelet
transform for binary images (bilevel, 1 bit per pixel) that solves these problems is
described.
We present our solution to these problems in the more general greylevel case:

the Table–Lookup Haar (TLHaar) method, a reversible n–bit to n–bit transform.
TLHaar uses two lookup tables (LUTs) called AB2HL and HL2AB, each of size 22n.
Given A and B, (H,L) = AB2HL(A,B). Thus, during the transform process only
table lookups and bit shifts are performed when operating on data values.
To evaluate TLHaar we assembled a suite of 8–bit image sets, with each set con-

taining images of a particular type (bilevel, shaded line art, photographs, etc.). We
then implemented and optimized the TLHaar and IHaar transforms. We recorded
their execution times and compressed the coefficients they produced with several
coders. Our tests indicate that TLHaar is faster than IHaar, particularly when trans-
forming data in large chunks. For data that have sharp edges, such as bilevel, line art,
and computer generated images, coefficients generated by TLHaar compress better
than IHaar. For other types of data, such as MRI, coefficients compress from 0.013%
to 1.78% worse, depending on the compression method used.

2 Table–Lookup Haar

Table–Lookup Haar (TLHaar) performs a Haar–like wavelet transform, replacing the
averaging and differencing steps with a single table lookup. TLHaar uses a set of two
2D lookup tables, called AB2HL and HL2AB. Each table contains 22n entries, with
each entry being 2n bits wide, the upper and lower n bits each containing a value.
AB2HL is used when performing a forward transform. It takes two n–bit data values
A and B as indices and produces a 2n bit value, where the upper n bits are the
high–pass value and the lower n bits are the low–pass value. HL2AB is used when
reversing a transform, similarly converting (H,L) to (A,B). The transform process
is illustrated in figure 1.
TLHaar is related to the IHaar transform. The IHaar transform process is de-

scribed by the equations at the left of figure 2. These can be interpreted as a lookup
table, as shown at the right of the same figure, where the sign of Ĥ can be thought of
as an indicator as to whether the table entry is above or below the diagonal. Given
L̂ and the magnitude of Ĥ, it is easy to determine what pair of values should be
assigned to A and B, but the ordering of the pair is ambiguous. The sign bit is what
disambiguates this.
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Figure 1: TLHaar transform process.

Figure 2: The IHaar equations, and the equivalent transform table.

2.1 Transform LUTs

The LUTs used in TLHaar have the following properties:

|H̃i| ≤ |H̃j| ⇐⇒ |Hi| ≤ |Hj| (1)

|L̃i| ≤ |L̃j| ⇐⇒ |Li| ≤ |Lj|. (2)

That is, for any given two pairs of data values their high– and low–pass values as
created by TLHaar will have the same relationships as those created by Haar. For
the transform table to be reversible there must be a 1:1 mapping between entries in
the two tables. We therefore initialize each with an identity transform: AB2HL[i, j]
= (i, j), HL2AB[i, j] = (i, j). We then rearrange the entries in HL2AB and AB2HL
so properties 1 and 2 hold. We accomplish this via a sort of the LUTs according to
the following pseudocode:

do {
For each L Column in HL2AB

Sort based on |(A−B)/2.0|
For each H Row in HL2AB

Sort based on (A+B)/2.0
} while (there was a swap)
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During the sort process whenever a swap occurs in HL2AB the corresponding
entries in AB2HL are also swapped.
It was not clear beforehand that this sort would converge. At this time we do

not have a general proof that the sort will always converge, however we tested this
process of creating tables for values 2 ≤ n ≤ 12, and our tests indicate that in all
cases the sort converges. We are unable to test further since when n > 12 the tables
become so large they are impractical. For n = 13 a single LUT will contain over 67
million entries and be 256 megabytes in size.
Figure 3 shows AB2HL and HL2AB for n = 3 before and after sorting. Comparing

with the table in figure 2, we see that for the TLHaar (A,B) → H transform the
entries on the diagonal are equivalent to IHaar. For example, (3,3) produces an H of
0 and an L of 3. But further from the diagonal the entries do not approximate IHaar
as well. Because TLHaar does not use sign bits, instead using an identity transform
to obtain a 1:1 mapping, the LUTs must contain (H,L) and (A,B) pairs that do not
exist in the IHaar transform table.

Figure 3: The n = 3 LUTs before and after sorting.
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2.2 Sorted LUTs Are Not Unique

In section 2.1 we demonstrated the method used for creating the TLHaar LUTs, using
a sort on an identity transform. If the LUTs are initialized with a 1:1 mapping differ-
ent from our original method, will the sort still result in the same transform LUTs?
The answer to this question is no, implying that LUTs satisfying relationships 1 and
2 are not unique. As a test we permuted one of the initialized LUTs before sorting,
by randomly swapping entries. The corresponding entries in the other LUT were
also swapped, maintaining a 1:1 mapping. We then performed our sort on the per-
muted tables. The resulting transform tables were different from those of our original
method. By varying the number of swaps and the seed to the pseudorandom number
generator we produced tables that were similar to each other, but not identical.

3 TLHaar Implementation Optimizations

Because TLHaar operates on and produces n–bit data, when n is both a power of
2 and an integer size common in modern computer architectures (8–bit byte, 16–bit
short integer, etc.) it is possible to store the low–pass and high–pass values in arrays
of that integer type. This allows us to implement and take better advantage of some
special optimizations. Here we describe optimizations made for an implementation
that operates on 8–bit images.
We first altered how we perform table lookups in a row transform. Since input

values A and B are adjacent in memory, instead of reading A and B separately and
indexing the AB2HL LUT with both (i.e. HL = AB2HL[A][B]) we cast the input
array of bytes into an array of 16–bit short integers, and read A and B together as
a single short AB. This allows us to perform a complete table lookup using fewer
operations: HL = AB2HL[AB].
We would like to use the above optimization when performing a transform in

the column direction. The standard row transform operates on an image one row
at a time, writing out the resulting low–pass values such that they are contiguous
in the row direction. Thus a given image column is not contiguous in memory. To
solve this when performing a row transform we transform two rows at a time. Given
the k-th pair of pixels from rows i and i + 1 we transform AiBi and Ai+1Bi+1, and
place Li and Li+1 adjacent to each other in preparation for the column transform.
The column transform can then proceed down columns in image space, but along
adjacent memory locations. The idea behind the optimization is shown in figure 4.
The right side shows the low–pass values ordered in both memory and image space,
the bold lines indicating adjacent memory values.

4 Results

To obtain the results in this paper we assembled a suite of 8–bit images. The images
fall into the following categories:
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Figure 4: The TLHaar data reordering optimization. The top shows the normal
transform procedure, and the bottom the reordering procedure.

• BW Lines. A collection of 106 bilevel (black–and–white) line figures. Each
figure is small, an example size being 108 by 110 pixels [1].

• LineArt. A set of 18 line art images. Each image has shading, gradient fills,
and the like.

• ObjectBank. A set of 122 computer–rendered images of everyday objects [1].

• MRI. A set of 185 MRI scans. Each image is 256 by 256 pixels [2].

• ccitt. Eight of the standard bilevel (black–and–white) ccitt FAX test images
[3]. Each is 1728 by 2376 pixels.

• DB1 B. A set of 80 fingerprint scans[4]. Each is 300 by 300 pixels.

• DB2 B. A set of 80 fingerprint scans. These are the same fingerprints as in
DB1 B, but each image is 256 by 364 pixels, and the images have been
processed to bring out details.

• Photos. A set of 29 photographic images [5, 6]. These include standard test
images (such as “Lena”) and personal photographs from the lead author.

• r2 slices. A set of 221 randomly selected images extracted from the data
produced by a Richtmeyer–Meshkov mixing simulation, described in [8].

• Power2. This is a selection of images from Photos, where each image is square
and has an edge length that is a power of 2. These are used to evaluate the
reordering method described in section 3.

In each table of results the column heading “% Gain” indicates gains obtained using
TLHaar over IHaar (positive percentage meaning TLHaar is better).
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4.1 Execution Time

To compare execution times we implemented classes to perform IHaar and TLHaar
transforms on 8–bit grayscale images, and optimized each separately. We also im-
plemented versions of TLHaar and IHaar that perform data reordering and operate
on square images with edge lengths that are a power of 2. Timings were taken on a
550 MHz PowerBook G4 running MacOS 10.1.5. The time given is an average over
10 transform runs, where a run transforms all images in a particular category, and
includes only the time taken to transform the image. Execution times are given in
table 1.

Transform Time (sec)

Category TLHaar IHaar % Gain

BW Lines 0.06368 0.06540 2.63
LineArt 0.15289 0.27621 44.65

ObjectBank 0.90947 1.08220 15.96
MRI 0.45442 0.55188 17.66

MRI (reord) 0.38121 0.51650 26.19
ccitt 1.31669 1.96779 33.09
DB1 B 0.25860 0.36670 29.48
DB2 B 0.31501 0.35577 11.46
Photos 1.02017 1.34319 24.05
r2 slices 0.31479 0.39773 20.85
Power2 0.23322 0.31506 25.98

Power2 (reord) 0.20557 0.29665 30.70

Table 1: Our test image categories and their transform times. (reord) indicates
execution time using the reordering method of section 3.

4.2 Compressibility of Coefficients

There is no absolute way to determine how well a set of wavelet coefficients com-
presses, as the amount of compression obtained is determined by the methods used
to find and exploit any redundancy present. We are unable to review the many
methods that are possible. To demonstrate how coefficients produced by TLHaar
compress compared to those produced by IHaar we transformed the test images and
then compressed the results using three freely available compression programs: gzip1,
bzip2, and an arithmetic coder available from Alistair Moffat3. We used binary and
byte arithmetic encoding.
To gauge the effect of sign bits on the compressibility of IHaar coefficients we

compressed them in two ways. In the first method the coefficient magnitudes were
written as a stream of bytes and compressed, and the sign bit for each nonzero

1http://www.gzip.org
2http://sources.redhat.com/bzip2/
3http://www.cs.mu.oz.au/~alistair/arith_coder/
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magnitude was appended uncompressed. In the second method coefficient magnitudes
were written as a stream of bytes, and then a binary stream consisting of the sign bits
of all nonzero magnitudes was appended. The combined stream was then compressed.
Due to lack of space we present in table 2 results only for the former method,

as it presents IHaar more favorably and the comparison to TLHaar is more fair.
Generally when the latter method is used IHaar’s coefficients compress worse, to the
extent that when byte arithmetic encoding is used TLHaar is always superior. Some
example results in this case are TLHaar being 4.45% better in the Photos category
and 7.23% better in the MRI category.
Results for TLHaar in table 2 are when using unpermuted tables, as described

in section 2.1. We do not include the size of the transform LUTs in the TLHaar
coefficient sizes. The tables are a static part of the transform process and are therefore
known ahead of time, so in a coding application the tables do not need to be sent as
part of the encoded data.

Image TLHaar IHaar % Gain TLHaar IHaar % Gain

gzip bzip

BW Lines 360972 466731 22.66 391737 500173 21.68
LineArt 419235 528964 20.74 445387 515182 13.55

ObjectBank 3131056 3341803 6.31 3115625 3258474 4.38
MRI 5477859 5381934 -1.78 5281869 5190000 -1.77
ccitt 1157989 1557889 25.67 1013614 1454085 30.29
DB1 B 5016509 5086675 1.38 4973728 4853424 -2.48
DB2 B 5820744 6165921 5.60 6175512 6353409 2.80
Photos 15029496 14912472 -0.78 14963474 14651157 -2.13
r2 slices 777975 801756 2.97 785564 783836 -0.22

Binary Arithmetic Byte Arithmetic

BW Lines 391472 494289 20.80 377422 496202 23.94
LineArt 509478 627262 18.78 535573 677915 21.00

ObjectBank 3290576 3474223 5.29 3620160 3771556 4.01
MRI 5691930 5627898 -1.14 5408487 5407783 -0.013
ccitt 1199500 1652339 27.41 1288297 1969556 34.59
DB1 B 5673653 5346789 -6.11 4796648 4703212 -1.99
DB2 B 6415074 6803730 5.71 5679509 5946472 4.49
Photos 15234370 14873308 -2.43 14285797 14090810 -1.38
r2 slices 828160 850696 2.65 823509 834297 1.29

Table 2: Compressed category sizes (in bytes).

In section 2.2 we described an alternative method of creating LUTs for use in
TLHaar, by permuting the identity transform before sorting. We found that in some
cases a permuted table may result in a better coding rate. For example, a per-
muted table used to transform the Photos category resulted in a compressed size of
15,011,101 bytes using binary arithmetic encoding—an improvement of 1.47% over the
unpermuted table. Likewise the MRI category compressed 15% further, to 4,818,612
bytes. However, this same table when used with byte arithmetic coding compressed
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the Photos to 19,912,143 bytes, a 39% degradation. MRI likewise degraded 12%.

5 Conclusions and Future Research

From our timing tests it is clear that TLHaar is consistently faster—usually much
faster—than IHaar, particularly when data reordering is implemented. The only case
in which TLHaar’s speed is close to that of IHaar is when the images are rather small,
as is the case with the BW Lines image set. If a coding process will be using a simple
wavelet transform and speed is the primary concern then TLHaar should be chosen
over IHaar.
The compression results of TLHaar are not as clear as they are for execution time.

It is obvious that if a wavelet transform is to be used and the data being processed is
bilevel, or contains lines or hard edges (as are in the BW Lines, LineArt, ObjectBank,
ccitt, and DB2 B sets), then TLHaar is superior to IHaar. For other classes of images
the results are mixed, and vary depending on the coding method used. For example,
when using gzip as the compressor, the TLHaar coefficients produced for the Photos
category compress 0.78% worse than the IHaar coefficients. The gap widens to 2.43%
worse when binary arithmetic coding is used. Conversely for the MRI data set gzip
compresses TLHaar coefficients 1.78% worse than IHaar coefficients, but using byte
arithmetic encoding this gap narrows to only 0.013% worse.
We find this encouraging, as it indicates that with other coding techniques we may

be able to get TLHaar coefficients to compress even more efficiently, to an amount
that is better, or only slightly worse, than IHaar coefficients. For example, if the coef-
ficients are reordered in a systematic way using a Zerotree [10], this may expose more
redundancy. Our future research will involve exploring various ways of manipulating
the coefficients to improve the coding rate.
Other research will center around studying the LUTs in more detail. First, we

would like a better understanding of the behavior of the permuted LUTs. In some
cases permuted LUTs are better than unpermuted ones, and we want a clearer under-
standing of the circumstances in which this is the case. Second, during the transform
process each image type only touches a small percentage of the total entries in the
LUT. These entries are often in clusters. It may therefore be possible to create LUTs
for specific data types by optimizing only those parts of the LUT that the image
touches.
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